
Statistical Significance, Practical Significance, and P-Hacking

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

Statistical Significance vs. Practical Significance

- Statistical significance does not let us determine: Is this difference or relationship meaningful? Is it a substantial, "large enough" difference?
- Very small differences can be statistically significant too
- Need to consider practical significance

Practical Significance

- Statistical significance tells you whether an effect exists (unlikely to be due to chance)
- Practical significance tells you whether the effect matters in the real world

Sample Size and Statistical Significance

- Sample size increases → SE decreases (SE=SD divided by the square root of N)
- That makes it much easier to find significant relationships (risk of Type II error decreases)
- With small samples, SE is very large → only very large effects will be statistically significant
- With large samples, SE is very small → even very small effects can be statistically significant

Effect Size

- Effect size: unlike statistical significance, does not depend on sample size (using SD not SE)
- When comparing 2 means:

$$ES = \frac{Mean_{t1} - Mean_{t2}}{\sqrt{(SD_{t1}^2 + SD_{t2}^2)/2}}$$

- This is the difference in means in SD units
- Example: ES=0.5 means difference between two groups is ½ of standard deviation

Interpretation Benchmarks

- This measure of effect size is called Cohen's D
- Interpretation:
 - < 0.1 = tiny
 - -0.1-0.2 = very small
 - -0.2-0.5 = small
 - -0.5-0.8 = medium
 - -0.8-1.2 = large
 - -1.2-2.0 = very large
 - > 2.0 = huge

Example

- Effectiveness of TV program for reading skills:
 - experimental group mean = 12.3 (SD = 2.1)
 - control group mean= 11.2 (SD = 1.8)
- T=2, p<.05 → statistically significant
- ES=(12.3-11.2)/sqrt((2.1^2 + 1.8^2)/2)=0.56
- 0.56 = medium effect size → practically significant

Coffee Example

- Does drinking coffee before an exam improve students' test scores?
- Randomly assigning 1000 college students:
 - Group A (Coffee): 1 cup of coffee 30 min before the test
 - Group B (Decaf): 1 cup of decaf coffee (placebo)
- Two independent sample means, t-test

Group	n	Mean Score	Standard Deviation
A: Coffee	500	81.8	6.0
B: Decaf	500	81.0	6.2

Coffee Example Calculations

. ttesti 500 81.8 6.0 500 81 6.2

Two-sample t test with equal variances

Obs		Std. err.		•	-	
x 500	81.8 81	.2683282 .2772724	6 6.2	81.27281 80.45523	82.32719 81.54477	
Combined 1,000	81.4	.1932431	6.110884	81.02079	81.77921	
·		.3858497		.0428302		
Ha: diff < 0 Pr(T < t) = 0.9808		Ha: diff != T > t) =		Ha: d Pr(T > t	iff > 0) = 0.0192	
*anlaulating offoat	01.00					

. *calculating effect size $% \left(1\right) =\left(1\right) \left(1\right$

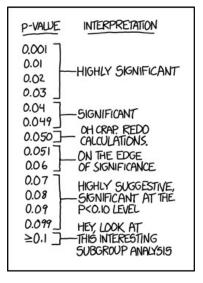
. di 0.8/sqrt((6^2+6.2^2)/2)

.13112992

Coffee Example Conclusions

- t=2.07, p=0.038 → statistically significant at .05 level
- ES=0.13 \rightarrow very small
- Not practically significant

IT WAS GETTING HARDER AND HARDER TO FIND A TRULY MEANINGFUL RELATIONSHIP AT THE MEDICAL JOURNAL HAPPY HOUR.



Debate on P-values and Significance

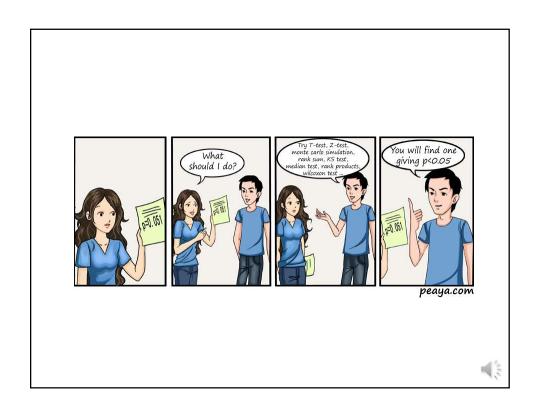
- https://www.nature.com/articles/s41562-017-0189-z
- "We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of new discoveries."
- http://fivethirtyeight.com/features/statisticiansfound-one-thing-they-can-agree-on-its-time-tostop-misusing-p-values/
- "The p-value was never intended to be a substitute for scientific reasoning."

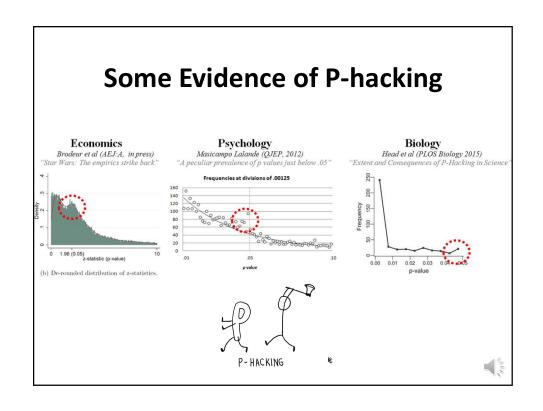
Excessive Focus on P-value Cutoffs

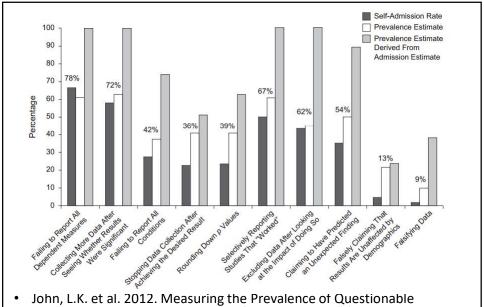
Reproducibility Crisis in Science

- https://www.wired.com/story/social-sciencereproducibility/
- Reproducibility Project: https://en.wikipedia.org/wiki/Reproducibility Project
- 100 psychology studies: only 36% successfully replicated
- 193 experiments from cancer studies: only 26% successfully replicated
- Similar issues found in economics, political science, sociology...

Key Reasons for Reproducibility Crisis


- Publication bias (journals prefer positive results) → "File drawer" problem
- Novelty is valued over replication
- Lack of transparency in methods and data
- Lack of study design pre-registration
- P-hacking




What is P-hacking?

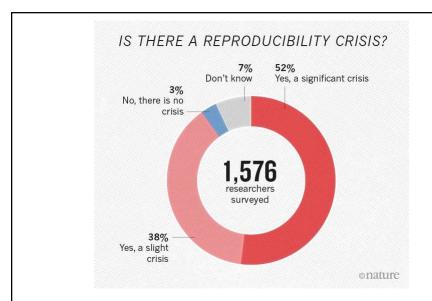
- Manipulating data analysis until you get p-value <.05
- Also known as "data dredging" or "fishing for significance"
- Driven by incentives to publish "positive" results
 - Dropping outliers that "ruin" significance (cognitive biases: "I am just cleaning the data")
 - Testing multiple variables or subsets of data, reporting only p<.05
 - Trying different models & analyses until p<.05 appears
 - Stopping data collection once p<.05 is achieved
- Result: The reported p-value ≠ true probability of the result under the null
- How Scientists Manipulate Research with P-values https://www.youtube.com/watch?v=kTMHruMz4ls



 John, L.K. et al. 2012. Measuring the Prevalence of Questionable Research Practices With Incentives for Truth Telling." (anonymous survey of 2000 psychologists).

https://journals.sagepub.com/doi/pdf/10.1177/0956797611430953

Possible Solutions


- Pre-registration of hypotheses, methods, analysis plans
- Open data and open code for transparency
- "Registered reports" publication model
- Replication incentives (funding, publication)
- Better statistical education
- If using multiple comparisons/variables, apply statistical corrections
- Just report p-values and effect sizes no p-value cutoffs, no "statistical significance"

Moving to a World Beyond "p<.05"

- https://www.tandfonline.com/doi/full/10.108
 0/00031305.2019.1583913
- "A label of statistical significance adds nothing to what is already conveyed by the value of p; in fact, this dichotomization of p-values makes matters worse."

• From: https://www.nature.com/articles/533452a

